
Introduction

Because of their importance in several areas of chemical,
physical and astrophysical research, van der Waals complexes
of simple molecules and rare gases (Rg) have for some time
received a great deal of experimental and theoretical atten-
tion.[1±6] Recently additional impetus has come from the
possible role of such systems in materials sciences and the
observation of new phenomena in large clusters of rare gases
with molecular impurities, either neutral or ionic.[7±13]

The aim of the present study is to demonstrate, by using the
specific example of carbon monoxide, how a more global
description of rare gas atoms weakly bound as van der Waals
(vdW) complexes to the CO molecule can be obtained from

quantum Monte Carlo calculations of the distribution of their
nuclear positions within the final molecule. State-of-the-art
quantum chemical treatments[13±15] start, in fact, with a fixed-
nuclei (FN), Born ± Oppenheimer (BO) approach and there-
fore search for the most stable structure of the three atomic
partners without any initial reference to the nuclear dynamics.
Thus, although this aspect is correctly accounted for by later
constructing the bound state levels of the triatomic complex,
this approach implies a cluster structure in which the atoms
have specified geometrical positions determined by the
minima in the potential energy surface (PES). This latter
description presents problems in the extraction of the
structural properties of such weakly bound complexes from
fully resolved infrared spectra,[16] since the progression of the
transitions can be assigned either in terms of a set of
approximate rigid body quantum numbers or in terms of the
nearly free internal rotor dynamics of the component
diatom.[17] In both limits a full set of measured and assigned
spectral transitions or of estimated spectroscopic constants is
used to determine the intermolecular potential. In either case,
the diatom component rovibrational states are often used as a
zeroth-order starting basis, and the overall rotations, plus a
radial basis related to the vdW vibrations, are employed in
further expansions with the appropriate angular momentum
recoupling.[13, 16, 18, 19] This spectroscopic analysis thus recog-
nizes the floppy nature and the wide-amplitude motions which
nuclei or groups of nuclei can undergo in these species and
underlines the difficulty of obtaining meaningful structural
parameters from traditional spectroscopic analyses. By con-
sidering the motion of the component diatom as the primary
dynamical reference[15, 16] it also acknowledges the fact that
the very notion of an equilibrium structure may become
irrelevant in such systems. On the other hand, an inspection of
bound and metastable final eigenfunctions that could help to
visualize the 3D behavior of such complexes is not commonly
used in studies of the energy levels and the predissociation
dynamics for vdW systems, since they tend to focus instead on
the calculation of the matrix elements for transitions and for
state lifetimes.[20, 21]

In the following we intend to show that a stochastic
approach can lead, with only a moderate computational
effort, to an overall representation of floppy, bound species in
their ground states that can provide additional insight into
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their true structural features. This alternative approach
complements the information already gathered from either
structural or dynamic representations of rovibrational and
metastable levels, as in the more conventional analysis,[3] and
can easily be extended to larger clusters with several Rg as
adatoms to the molecule; we are currently studying such
extensions of the title systems.[22]

The Stochastic Approach

One of the most general methods currently available for the
accurate treatment of quantum systems with more than a few
degrees of freedom is based on stochastic approaches which
are collectively referred to as quantum Monte Carlo (QMC)
methods.[23±25] Some of their main advantages are the absence
of size-dependent errors and by the favorable scaling of the
computational and storage requirements with the number of
degrees of freedom. The absence of a reference geometry
around which a basis expansion would be centered makes
them suitable for the treatment of floppy bound species where
the quantum mixing of several possible classical structures
frequently occurs. A further practical advantage, which will be
employed in the present study, is its ability to use a full
Hamiltonian generated in Cartesian coordinates and to
provide very accurate information on the ground state of
the bound system. The present calculations use the diffusion
Monte Carlo (DMC) algorithm, which is briefly described
below and more extensively in several recent publica-
tions.[26±29]

The Schrödinger equation for N bodies is given in
Equation (1), in atomic units and imaginary time t� it, where
y is the required wavefunction, VÃ the potential energy term, x
collectively describes all the position coordinates and mk are
the particle masses. Eref is a reference energy, which shifts the
origin of the energy scale to a convenient value. The above
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equation is isomorphic to a multidimensional anisotropic
diffusion equation with additional position-dependent rate
processes [Eq. (2)]. This implies that the original Schrödinger

equation may now be treated as a reaction ± diffusion process
and solved by a random walk. The linearity of the equation
allows many noninteracting random walkers (replicas) to be
used in each simulation and they are defined in terms of
Cartesian coordinates which are randomly changed and have
varying weight w(t) to simulate the kinetic and potential
energy terms in Equation (1). The population is propagated
along t by finite time steps. By considering the formal solution
of the time-dependent wavefunction in Equation (3), one sees

y(x,t)�
X

n

Cnfn(x) exp[ÿ (EnÿEref)]t (3)

that, as t increases, the dominant term of the sum on the r.h.s.
of Equation (3) will become the lowest eigenstate of the N-
particle system, since the higher states will have decayed to
zero. It is interesting to note at this point, to make a further
contact with the calculations described below, that the
primary product of DMC calculations is the total wave-
function, while the more conventional diagonalization proc-
esses[3] produce primarily energy levels, often disregarding the
information provided by the eigenvectors. The asymptotic
evolution of the amplitude of the wave function over
imaginary time as measured by the total weight of the random
walker ensemble W(t)�Swalks w(t) provides one mechanism
to compute the quantum energy within the DMC formalism.
W(t) decays exponentially according to the mismatch be-
tween the reference energy Eref and the ground state energy
E0 .[25, 29]

Although the study of excited bound states using QMC has
recently been undertaken,[30] the chief interest of the above
approach in the present analysis is its ability to generate the
nodeless ground states of weakly interacting molecular
systems.

Present Computations

The electronic degrees of freedom are first separated out by
solving the conventional fixed nuclei (FN) problem for all the
electrons as discussed below. Since the interaction between C
and O in the CO target corresponds to a strong chemical
bond, the high-frequency motion of the CO stretch vibration
can also be adiabatically decoupled from the soft vibrational
modes of the clusters. This implies that the full three-
dimensional He- and Ar ± CO potentials may be parametrized
in terms of the vibrational state i of the molecule with
quantum numbers vi [Eq. (4)].[31] A convenient way of
generating such adiabatic potentials is to average the full
interaction over target vibrational states, as in Equation (5);
the residual two Jacobi coordinates now represent the He

V(R,q,r) ) Vi(R,q;vi) (4)

Vi(R,q;vi)�hvi jV(R,qr) j vii (5)

distance from the CO center of mass (c.o.m.) and its angle
with the molecular bond axis, starting on the carbon side with
q� 08. An even simpler representation is obtained by replac-

Abstract in Italian: Le distribuzioni spaziali degli stati legati
di atomi di Elio e Argon con la molecola di CO vengono
esaminate partendo dalla superficie di potenziale elettronica
per lo stato fondamentale del rotatore rigido. Il problema dello
stato elettronico quantico viene risolto passando alla forma
diffusionale dell�eq. di Schrödinger ed ottenendo tali stati per
via numerica con metodi Montecarlo. Si puoÁ chiaramente
vedere dai risultati presentati che le deboli interazioni di van
der Waals implicano una forte componente di energia di punto
zero per gli stati fondamentali e quindi generano una marcata
delocalizzazione strutturale dei complessi in esame.



van der Waals Molecules 405 ± 410

Chem. Eur. J. 1999, 5, No. 2 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 0947-6539/99/0502-0407 $ 17.50+.50/0 407

ing the vibrational functions in Equation (5) with delta
functions at the CO equilibrium distance (rCO� 2.13a0),
thereby recovering the rigid rotor (RR) potential energy
surface VRR(R,q)�V(R,q ;rCO). The latter scheme has been
used in the present study, while the adiabatic approximation
will be employed in a subsequent analysis of larger clusters,[22]

with several He and Ar adducts, where frequency-shift
calculations similar to previous work will be carried
out.[22, 28, 32]

The He ± CO rigid rotor potential VRR was determined by
means of a density functional treatment (DFT) of the
electronic part at short and intermediate distances and
switched to dispersion interactions at larger distances beyond
the well region. This PES[32] compares well with the previous
calculated and empirical PES and therefore provides an
accurate description of the VRR(R,q) interaction. It is inter-
esting to note that it gives the position of the potential
minimum at a nonlinear structure (q� 1408) as suggested by
the earlier studies.[13±16]

Similar DFT calculations were carried out for Ar ± CO, and
the PES compares well with the most recent ab initio results[14]

(which were, however, limited to the shape of the well region),
as well as with other recent studies[34±35] and with the earlier
empirical surfaces.[36, 37] This suggests that the DFT method,
with long-range forces added, can provide realistic descrip-
tions of vdW interactions, as will become clear in the following
discussion. A full comparison of our DFT calculations with
the earlier data will be presented elsewhere,[38] where a
broader range of the molecular properties of the complex will
be discussed.

The general shapes of the present PES�s are shown in the
lower diagrams of Figure 1 (for He ± CO) and of Figure 2 (for
Ar ± CO). For the argon complex the potential minimum
(� ÿ 98 cmÿ1) is located at about R� 3.8 � and around q�
858, as suggested by earlier calculations.[34, 35] The much
shallower He ± CO minimum (� ÿ 22 cmÿ1) is located at
R� 3.5 � at an angle of q� 1408 as found in earlier
studies.[13±16]

We therefore used the above potential functions to carry
out the DMC calculations. They were done with an ensemble
of fixed size of 1000 random walkers using an ensemble
control scheme which splits the walker with highest weight
whenever a walker with small weight has not survived the
stochastic termination attempt.[29] Initial ensembles were
propagated for several thousand steps in order to reach
equilibrium. Time steps as short as 10 au were employed to
check for time-step errors. For both systems, time steps below
100 au caused no systematic effects exceeding our statistical
error bars. The quoted statistical accuracy amounts to one s

for a Gaussian error distribution, which is a good model for
the distribution of block energies in the present cases.

As expected, 4He ± CO is only a very weakly bound
complex: the present calculations yield the lowest bound
state at ÿ6.65� 0.007 cmÿ1, which compares reasonably well
with the result of ÿ6.96 cmÿ1 of Moszynski et al. ,[13] who
found twelve bound states for their PES by a variational
method. We have also obtained a value of ÿ73.93� 0.01 cmÿ1

for the lowest bound state of Ar ± CO within the VRR

approximation. The results from the best ab initio calcula

Figure 1. Top: calculations of 3D atomic-density distributions for the He
atom relative to the CO-fixed z axis (see text for details) and 2D
representation of the same density; bottom: 2D and 3D representation,
also in cylindrical coordinates as above, of the PES employed in the present
work. The Jacobi coordinates and the CO position are marked for clarity. In
the lower diagram a 2D representation is also shown of the bound-state
contour energies at the classical turning points.

Figure 2. As for Figure 1, but for the Ar ± CO system.

tions[35] suggest a binding energy of ÿ74.50 cmÿ1, with a zero-
point energy (ZPE) value of 21.786 cmÿ1, in good accord with
the present findings in spite of the use of a different PES. One
should also point out that the discrete variable representation
(DVR) method[35] is a very accurate way of obtaining bound
states for one-adduct complexes but rapidly becomes intract-
able for large complexes with many Rg adducts. On the other
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hand, the present DMC approach requires little extra effort as
the size increases.[22, 28] Furthermore, the DMC technique is
also useful in obtaining position correlation functions be-
tween atomic partners in the cluster, in visualizing the
structural aspects of the complex, and in carrying out such
calculations for larger systems.[22] In the present case of a
single rare gas adduct to a CO molecule, two-dimensional
density distribution 1(r,z) histograms have been calculated in
cylindrical coordinates. The z axis of the cylinder coordinate
system coincides with the CO bond and the polar radius r�
R sinq (with R,q the Jacobi coordinates) defines the perpen-
dicular distance of the Rg to the bond axis. The origin
coincides with the c.o.m. of the molecule, and the carbon atom
is on the positive z axis. The particle density is computed as a
function of r and z�R cosq by averaging over walks with
descendant weighting according to Equation (6).

1(r,z)� 1

2p

X
i

d�ri ÿ r�
r

�
d (ziÿ z)

�
walks

(6)

The calculation therefore accounts for the cylindrical
symmetry of the complex around the overall rotational angle
f. The computed quantities of Equation (6) are shown in the
upper parts of Figures 1 and 2 for the He ± CO and the Ar ±
CO complexes, respectively.

Discussion of Results

As mentioned before, the computed DMC histograms in
Cartesian coordinates are proportional to the spatial density
of the bound wavefunction for all the N nuclei interacting in
the system at hand. By taking advantage of adiabatic
decoupling, we can separate the internal vibrational motion
of the molecular atoms from the relative dynamics of the
three particles, leaving the one-particle density of the Rg
component with respect to the position of the diatomic species
as structural information. This density distribution corre-
sponds to the (J� 0, j� 0) rigid rotor bound state furnished by
the alternative expansion methods.[13, 35] The well-known
method of describing nuclear motions in weakly bound vdW
complexes involves a set of coordinates related either to a
space-fixed (SF) or a body-fixed (BF) frame of reference.[39, 40]

Such expansions are then employed to yield variationally
computed transition matrix elements, with either Hamiltonian
(BF or SF), which are in turn compared either with sequences
of spectroscopic transitions between triatomic bound states or
with line-broadening features due to metastability effects and
predissociation mechanisms.[20, 21] In such analysis, however,
the total wavefunctions of the various bound states are rarely
analysed and the highly delocalized character of the more
floppy complexes like He ± CO is only obliquely described by
taking the view that it contains a nearly free rotating CO
partner.[14±16, 34±37] The more direct view provided by the
present DMC calculations allows us to confirm earlier results
and directly focuses on the atomic motion of the Rg adduct
within the complex. By choosing cylindrical coordinates
referred to a fixed CO molecule (J� 0, j� 0 bound state in
the SF representation), the DMC density is in fact readily able

to provide the spatial density for that part of the wavefunction
which is associated with either the He or Ar atomic partners in
the VdW complexes.

The top part of Figure 1 shows such a density distribution
for the He atom. The following observations can easily be
made:
1. The distribution is very broadly shaped over nearly the

whole region around the CO monomer, with only a slight
increase of amplitude on the oxygen side (q approaching
1808) but being essentially constant from q� 1208 onwards.

2. Although the density distribution of the He atom is seen to
decrease as the angle q varies from 1808 toward 08, the
actual density values for the other linear O-C-He geometry
remain high, indicating that there is a large probability for
the Rg adduct to exist in that configuration.

3. The He atom is therefore highly delocalized, both in R and
q, and the average position of the helium is different from
the one suggested by the single configuration of the BO
potential minimum. This point could be further understood
by looking at the shape of the angular potential when the
Rg adduct is kept at the distances R of its radial potential
minima as the angle q is changed (minimum energy path).
This is shown in the upper part of Figure 3, where such a
profile is compared with the position of the lowest bound
state (straight line) given by the DMC calculations. The
absence of a local anisotropy barrier explains the high
delocalization of the He atom with respect to the molecular
partner at the bound-state energy. Thus the adduct appears
to be kept together mainly by long-range dispersion forces.

Figure 3. Minimum energy profiles for motion of the rare gas atoms
around CO as a function of the angular coordinate q� arccos(R� req)
discussed in the main text. Top: angular variation for the He ± CO system,
with the position of the lowest bound level (6.65� 0.007 cmÿ1) marked as a
horizontal line; bottom: same representation for the Ar ± CO system,
where the bound state is located at ÿ73.93� 0.01 cmÿ1.
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The above results are indeed in accord with earlier
calculations for the bound, total wavefunctions obtained
by diagonalizing the SF Hamiltonian on a basis of rovibra-
tional functions.[13] The results of Moszynski et al. for (j� 0,
J� 0) in fact show a substantial delocalization both in R and q

and the presence of a total symmetry for the wave-
function fairly close to, albeit still different from, the spherical
limit. This is also indicated by the DMC density plot of
Figure 1.

The power of the present approach is further illustrated by
repetition of the same calculations for the Ar ± CO complex,
for which previous computations of the bound triatomic
wavefunctions exist.[34, 35] For this system the variational
problem of determining bound and metastable states becomes
numerically more demanding than for He ± CO.[39] On the
other hand, once the PES is available, the DMC evaluation of
its ground bound state is not computationally more difficult
than that of the He complex.

The Ar adduct spatial density distribution with
respect to the fixed CO molecule (j� 0, J� 0 in the
SF parlance) is shown in the upper part of Figure 2, while
the angular behavior of the PES profile at the R values of the
minima as q changes are depicted in the lower part of
Figure 3.
1. The Ar atom density around the CO partner clearly peaks

at the T-shaped geometry (q�p/2) and is more narrowly
distributed along R ; that is, the localization in space of the
argon adduct is stronger than for He.

2. The lowest bound state is noticeably localized in the
attractive well (the ZPE is about 30 % of the well depth,
compared with about 70 % in the case of He ± CO), and is
below the barrier for rotation on the carbon end: the
corresponding CO motion, therefore, is more that of a
hindered rotor within the complex but still retains some
features of a nearly free internal rotor.[35]

3. The Ar adduct is here seen to exhibit a nonvanishing
density for the collinear structure of Ar-O-C, that is, it
shows a sizeable probability of existing above the
orientational barrier, as suggested by the DVR calcula-
tions[35] and by the position of the bound state in Figure 3.
Compared with the He adduct, the asymmetric density
distribution of Ar atom along the CO molecule is now
more marked.

4. There is a noticeable probability that the Ar atom will
tunnel through the end-carbon rotational barrier, thereby
reaching the linear O-C-Ar configuration, a feature
also discussed when comparing calculations to experi-
ments.[35]

A further qualitative indicator of the differences in
behavior can be seen by looking at the associated wavelengths
of the triatomic pseudoparticles bound in the lowest states
of the complex systems. The value of l for He ± CO is
about 4.8 �, to be compared with the lArCO value of about
0.7 �; in other words, the behavior of the latter system is
much more classical than that of the former. However, as the
ZPE value for the Ar ± CO is about twice that of He ± CO
(�30 cmÿ1 versus �16 cmÿ1) the local velocities are
nearly the same: about 2 � psÿ1 for He and about 3 � psÿ1

for Ar.

Conclusion

The present DMC calculations based on realistic PES�s from
our ab initio DFT calculations[33, 38] have allowed us to
examine quite directly the quantum features of nuclear
delocalization in weakly bound vdW complexes of three
component atoms. As it turns out, the method confirms the
highly delocalized nature of the lowest bound state of He ±
CO found in earlier calculations[13] and also allows us to
extend the results to a different complex, Ar ± CO, without
increase of computational effort. In the latter case the present
calculations are in agreement with the latest ab initio results
on the location of its bound triatomic states;[35] this finding
confirms the accuracy of the present stochastic treatment. The
interesting feature of these DMC calculations is that they
directly underline the dynamic nature of the structures in the
two clusters and the quantum delocalisation of the He and Ar
atoms within the systems. In both cases, in fact, the floppy
character of the vdW complexes already pointed out in
previous studies[13, 16, 34, 35] is confirmed by the DMC results.
Although the rather dubious validity of invoking a specific
structure to describe the highly delocalized He ± M bound
states has been mentioned before in several instances,[13±21] the
DMC quantum density distributions provide an additional,
and very instructive, representation for such molecular
quantum states.
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